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Real-Time Model of Three-Dimensional Dynamic Reattachment
Using Neural Networks

William E. Faller,* Scott J. Schreck,t and Hank E. Helin}
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The reattachment of unsteady separated flowfields is a critical issue in the determination of both helicopter
and wind-turbine blade performance as well as for poststall maneuvers in aircraft. To fully understand this
process and to enable control, numerical techniques that provide real-time models of the reattachment process
over a broad parameter range must be realized. This article describes real-time models, using neural networks,
for the dynamic reattachment of three-dimensional unsteady separated flowfields. The results indicate that the
neural network model accurately predicts the dynamic reattachment process to within 5% of the experimental
data across the parameter space bounded by nondimensional pitch rates a* of 0.01 and 0.20. However, the
error was substantially larger for an a™ of 0.02. Analyses indicate that the parameter space is governed by two
different sets of flow physics that transition at roughly an a* of 0.03. As such, the results show that neural
network models can be used not only to detect changes in the flow physics, but for defining areas within the
parameter space where additional experimental characterization would be useful. Further, the results indicate
that the flowfield wing interactions are three dimensional, however, the spanwise effects of the three dimen-

sionality are subdued relative to dynamic stall.
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Introduction

ESEARCH in the area of unsteady flows continues to

be strongly motivated by potential enhancements to hel-
icopter, wind-turbine, and aircraft performance. Helicopter
and wind-turbine blades experience force and moment his-
tories that are dependent on both dynamic stall as well as on
the subsequent reattachment of the flowfield. Additionally,
the dynamic reattachment of unsteady separated flowfields
has been highlighted as a major concern for rapidly maneu-
vering aircraft.!

The three dimensionality inherent to practical geometries
as well as the time dependence of unsteady separated flows
renders them highly complex. For dynamic stall, spanwise
nonuniformities in vortex structure and kinematics give rise
to spanwise variations in surface pressure distribution and
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normal force coefficient.?~ Similar spanwise nonuniformities
and time-dependent variations in surface pressure distribution
have been shown for the dynamic reattachment of unsteady
separated flowfields.®~*

This temporal and spatial complexity, in turn, yields a phe-
nomenon that is very difficult to thoroughly characterize. As
such, the broad parameter space encompassed by three-di-
mensional unsteady separated flows has defied comprehensive
description. However, neural network models that accurately
predict, and describe mathematically, three-dimensional un-
steady surface pressure topologies as well as the aerodynamic
coefficients have been described.'”-'* Further, the neural
network models were shown to be accurate throughout the
complete time history of the maneuver. Building upon these
techniques, real-time models for dynamic reattachment of
three-dimensional unsteady separated flowfields were de-
veloped.

Methods

Unsteady Surface Pressure Measurement

Surface pressure measurements were performed in the Frank
J. Seiler 0.91 m X 0.91 m low-speed wind tunnel located at
the U.S. Air Force Academy. A rectangular planform wing
(NACA 0015 cross section), having a span of 30.48 cm and
a semiaspect ratio of 2.0 was bounded at the root by a circular
splitter plate. Fifteen Endevco 8507-2 miniature pressure
transducers were close coupled to the wing surface through
15 pressure ports located along the chord line. The 15 trans-
ducers were located between 0% chord, the leading edge, and
90% chord. Using wingtip extensions these 15 pressure trans-
ducers were moved to 3 spanwise positions located at 0%
span (the wing root), 37.5% span, and 80% span near the
wingtip. This is shown schematically in Fig. 1. In all tests,
wind-tunnel test section velocity was held constant at 9.14 m/
s, corresponding to a chord Reynolds number of 6.9 x 10*.

Starting at 60 deg, from a fully stalled condition, the wing/
splitter plate configuration was pitched down at a constant
rate (about the wing quarter chord) to a final angle of 0 deg.
Pitch rates da/dt of 34, 68, 172, 258, 344, 516, and 688 deg/s
were employed. This corresponded to nondimensional pitch
rates a* of 0.01, 0.02, 0.05, 0.075, 0.10, 0.15, and 0.20. Pitch
angle histories for these records are shown in Fig. 2.
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Fig. 1 Pressure transducer locations both along the chord and span-
wise on the wing.
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Fig. 2 Wing motion histories for the seven pitch-down cases.

A total of 21 combinations of nondimensional pitch rate
and spanwise pressure port location were recorded. Signals
originating from the pressure transducers were sampled at 500
Hz and digitized yielding surface pressure records comprised
of 200 samples per transducer for nondimensional pitch rates
of 0.05-0.20. The surface pressure records for nondimen-
sional pitch rates of 0.01 and 0.02 were comprised of 1000
data points. For each record, 20 consecutive wing pitch mo-
tions were sampled and ensemble averaged to arrive at the
final surface pressure data set. Note, because of the relatively
small magnitude of the pressure readings, a factor of 5-10
smaller than for dynamic stall, the signal reflects mechanical
vibrations in some instances, despite ensemble averaging. Fol-
lowing acquisition, the surface pressure values were converted
to pressure coefficients ¢,. A detailed explanation of the meth-
ods for experiments based on both pitch-up and pitch-down
motions have previously been described.?**

Figure 3 shows a representative set of ensemble-averaged
experimental data for one pitch rate (a* = 0.05) at one span
location (the wing root). The abscissa is nondimensional time
and the ordinate is surface pressure. The relative magnitudes
of the pressure traces are accurate, but the traces have been
offset to ease viewing. Each pressure signature corresponds
to the data record obtained from a single pressure port lo-
cation, leading edge at the bottom of the figure, and 90%
chord at the top of the figure. Flowfield reattachment at each
pressure port location has been circled. As shown below the
figure, each of the pressure signatures was comprised of 200
data points.

Neural Network Model

For all nondimensional pitch rates, prominent temporal and
spatial variations in the surface pressure topology were ap-
parent. To incorporate these characteristics, a simplified model
comprised of three span locations (0, 37.5, and 80% span)
was developed. The neural network model (architecture) is
shown schematically in Fig. 4. A standard sigmoidal activation
function, 1/(1 + e~*), was used and the inputs to the network
were the time-varying pitch angle «, angular velocity da/dr,
and the surface pressure initial conditions at time f,. The
model was trained on 5 of the 7 data records corresponding
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Fig. 3 Raw data for a single pitch history. Each of the 15 pressure
traces was comprised of 200 data points.
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Fig. 4 The neural network model. Inputs were a, da/ds, and ¢ + At
fed back as inputs throughout the pitch history.

1)

to nondimensional pitch rates of 0.01, 0.02, 0.05, 0.10, and
0.20, using a time-series algorithm based on backpropagation.
The input vector was comprised of 47 values. Both hidden
layers were comprised of 32 units and the output layer was
comprised of 60 units. The targeted outputs were the surface
pressure values at time (¢ + Af) for each of the 45 surface
pressure records as well as the 15 aerodynamic coefficients,
<, ¢, C,, C, and C,), for each of the three span locations
modeled. Subsequently, to maintain the time dependence of
the flowfield, the time (¢ + Af) network predictions for each
of the 45 surface pressures were fed back as inputs to the
network throughout the pitch history. This type of neural
network model has previously been described in detail for
predictions of dynamic stall.’-'* Reasonably complete de-
scriptions of both the mathematics and techniques for neural

networks used in both modeling and control are also avail-
able.14-1¢
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Results

To evaluate the performance of the model, the predicted
surface pressures were compared directly to the measured
ensemble-averaged data. The only external inputs provided
to the model were the instantaneous pitch angle « and the
angular velocity da/dt. The internal inputs to the model were
the time (¢ + Af) predicted surface pressures that were fed
back as inputs to maintain the time-dependence of the flow-
field. With this posttraining it was possible to accurately de-
termine not only how well the model predicted the training
data, but how well the model could predict dynamic reat-
tachment for a broad range of pitch-down motions not used
during training.
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Fig. 5 Surface pressures for nondimensional pitch rate 0.20 at 0%
span.

TRAILING EOGE

PRESSURE COEFFICIENT

essorys’

006 2.5 S0 7.5 100 125 15.0 175 20.0 2.5
NONDIMENSIONAL TIME

Fig. 6 Surface pressures for nondimensional pitch rate 0.20 at 37.5%
span.
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Fig. 7 Surface pressures for nondimensional pitch rate 0.20 at 80%
span.
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Fig. 8 Surface pressures for nondimensional pitch rate 0.01 and 0%
span.

Graphical analyses of the model-predicted surface pressures
are shown in Figs. 5-10. In all figures, time-varying surface
pressure at port 1, the leading edge, is at the bottom of the
figure. Time-varying surface pressure at port 15, 90% chord,
is at the top. The ordinate is the surface pressure and the
abscissa is nondimensional time. The measured surface pres-
sure data are shown as a solid line and the surface pressures
predicted via the neural network model are shown as a dashed
line. The relative magnitudes of the pressure coefficients are
accurate, but the plots have been offset to ease viewing.

In all figures, the wing starts at 60-deg angle of attack
(nondimensional time 0.0) and is pitched down to 0-deg angle
of attack. In response to decreasing wing pitch angle, surface
pressures initially increase along the entire wing chord. The
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Fig. 9 Surface pressures for nondimensional pitch rate 0.02 and 0%
span.
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Fig. 10 Surface pressures for nondimensional pitch rate 0.075 and
37.5% span.

increase in surface pressure is then followed by a surface
pressure decrease. This decrease in surface pressure, which
proceeds from the leading-edge region to the trailing edge of
the wing, indicates incipient flowfield reattachment. In Fig.
3 this pressure reversal, indicative of reattachment, was cir-
cled at each pressure port location.®’

The analyses for a nondimensional pitch rate of 0.2 at each
of the three span locations (0, 37.5, and 80%) are shown in
Figs. 5-7. In Fig. 5, at the wing root, prior to the occurrence
of the pressure reversal, the model accurately predicted the
surface pressure increases at all port locations. At the pressure
reversal, the model accurately predicted the time and mag-
nitude of dynamic reattachment. Similarly, in Figs. 6 and 7,
at 37.5 and 80% span, the model accurately predicted the

initial surface pressure increases. However, as shown in Fig.
6, the time of occurrence and the magnitude of the pressure
reversal were not well predicted at the 37.5% span location.
At 80% span, both the time of occurrence and magnitude of
the pressure reversal were accurately predicted.

The analysis for a nondimensional pitch rate of 0.01, at the
wing root, is shown in Fig. 8. Initial pressure values were
overpredicted near the leading edge and underpredicted near
the trailing edge. However, the model accurately predicted
the time of occurrence and magnitude of the pressure reversal
at all port locations. The magnitude and time of occurrence
of the pressure peak occurring at nondimensional time 90.0,
near the leading edge, was also accurately predicted. Similar
results were obtained for the remaining two records in the
simplified three-dimensional flowfield (37.5 and 80% span).
However, as shown previously for a nondimensional pitch rate
of 0.2, prediction accuracy was decreased for the surface pres-
sure distribution at 37.5% span as compared to both 0 and
80% spans.

The analysis for a nondimensional pitch rate of 0.02, at the
wing root, is shown in Fig. 9. The initial surface pressure rise
was overpredicted. The predicted time of the pressure reversal
occurs earlier than in the experimental data. In addition, the
magnitude of the pressure peak (nondimensional time 45.0)
was substantially overpredicted. Similar results were obtained
for the remaining two records in the simplified three-dimen-
sional flowfield at 37.5 and 80% spans.

Figure 10 shows a similar plot for a nondimensional pitch
rate of 0.075 at the 37.5% span location. This record was not
used during training. Near the leading edge the model ac-
curately predicted the initial pressure rise, while near the
trailing edge the network underpredicted the surface pressure
values. The time of flowfield reattachment was accurately
predicted by the model, however, the magnitude of the pres-
sure reversal was underpredicted. As shown previously, the
records at 0 and 80% spans were predicted more accurately
by the model.

To maintain uniformity with the surface pressure data, the
accuracy of the neural-network-predicted aerodynamic coef-
ficients was verified graphically. The graphical analyses for
predicting both training data as well as for a data set not used
during training are shown in Figs. 11 and 12, respectively. In
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Fig. 11 Aerodynamic coefficients for nondimensional pitch rate 0.02
at 0% span. Bottom to top, C,, C,, C,, C,, and C,,.
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Fig. 12 Aerodynamic coefficients for nondimensional pitch rate 0.075
at 37.5% span. Bottom to top, C,, C,, C,, C,, and C,,.

both figures, the abscissa is nondimensional time and the
ordinate corresponds to the aerodynamic coefficients. The
measured data is shown as a solid line and the aerodynamic
coefficients predicted by the neural network model are shown
as a dashed line. Again, the relative magnitudes of the aero-
dynamic coefficients are accurate, but the plots have been
offset to ease viewing. Starting at the bottom of the figure
and proceeding to the top, the aerodynamic coefficients shown
are C,, C,;, C,, C, and C,,.

The analysis for a nondimensional pitch rate of 0.02, at 0%
span, is shown in Fig. 11. The neural network accurately
predicted both the drag and tangential coefficients as well as
the pitching moment coefficient throughout the pitch history.
However, consistent with the overprediction of the surface
pressure peak, the model overpredicted the magnitudes of
both the normal and lift coefficients. Figure 12 shows the
analysis for a nondimensional pitch rate of 0.075 at the 37.5%
span location. This record was not used during training. For
these conditions, the time of occurrence of peak magnitudes
was accurately predicted in all cases. However, the magnitude
of the peak normal and lift forces was slightly underpredicted.

Overall, as measured by a time-averaged deviation, the
model accurately predicted the unsteady surface pressure dis-
tributions as well as the aerodynamic coefficients to within
5% of the experimental data. Consistent results were obtained
both for the training data as well as for generalization to other
constant pitch rates. These results strongly suggest that the
neural network model can accurately predict dynamic reat-
tachment. However, as shown, the error was substantially
larger for a nondimensional pitch rate of 0.02. These results
suggest that the flow physics change dramatically in this region
of the parameter space. A more detailed experimental char-
acterization, of this region, appears warranted in order to
fully describe the flow physics.

Discussion

Unsteady surface pressure readings were obtained from a
wing started at 60-deg angle of attack and pitched down to
0-deg angle of attack. All records showed extensive alterations
in the three-dimensional dynamic reattachment as a function
of both nondimensional pitch rate and span location. Five of
seven records were used to train the neural network. Follow-

ing training, the model was required to predict the flowfield
dynamic reattachment based solely on the wing motion his-
tory.

The analyses for predicting a nondimensional pitch rate of
0.20 at 0, 37.5, and 80% span were shown in Figs. 5, 6, and
7, respectively. The analysis for predicting a nondimensional
pitch rate of 0.01 at the 0% span location was shown in Fig.
8. All of these data sets were used in training the neural
network. In all of the figures, the overlaid plots indicated that
the neural network accurately modeled dynamic reattach-
ment. Additionally, all results indicated that the neural net-
work accurately predicted the pressure reversal, at each port
location, which was characteristic of the flow reattachment.
Interestingly, the reattachment process at the 37.5% span
location was the most difficult case for the neural network to
model. Based on previous results for dynamic stall, it was
anticipated that the 37.5% span location would have provided
the most accurate predictions.

The result for a nondimensional pitch rate of 0.02 was shown
in Fig. 9. In this case, it was clear that the model could not
predict the surface pressure peak that occurred at a nondi-
mensional time 45.0. This pressure peak was also evident for
a nondimensional pitch rate of 0.01, at a nondimensional time
of 90.0, but not for a* of 0.05 or higher. As shown in Fig.
13, the magnitude of the pressure peak falls off nonlinearly
from a maximum, at an a* of 0.01, to a value of zero at an
at of 0.05. Since the model has only two examples where
this pressure peak occurs, and the fall-off in magnitude is
nonlinear, the end result is that the model overpredicted the
magnitude of the pressure peak for an a* of 0.02. This is a
case where additional data in the « * range of 0.02-0.04 would
be useful in order to better characterize the change in flow
physics that occurs in this region of the parameter space. Note,
a priori, there was no way to know if this additional experi-
mental characterization would be justified or needed.

The analysis for predicting a nondimensional pitch rate of
0.075 at the 37.5% span location is shown in Fig. 10. This
data set was not used in training the neural network. The
results indicated that the neural network accurately predicted
the unsteady flowfield reattachment. Both magnitudes and
pressure reversal times were generally well predicted. Thus,
for data records not used during training, the neural network
model was able to predict the dynamic reattachment process.

Similar results were obtained for the prediction of the aero-
dynamic forces and moments. The analysis for predicting the
aerodynamic coefficients associated with a nondimensional
pitch rate of 0.02 was shown in Fig. 11. Consistent with the
results described for the surface pressures, the peak magni-
tudes of the normal and lift forces were overpredicted. Figure
12 showed the analysis for an «* of 0.075 at the 37.5% span
location. This data set was not used in training the neural
network. Again, the results indicated that the neural network
accurately predicted both the magnitude and time-dependent
history of the aerodynamic coefficients. Consistent with the
results for the surface pressure distributions shown earlier,
the neural network was shown to accurately model the aero-
dynamic coefficients across a wide range of nondimensional
pitch rates.
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Fig. 13 Surface pressure peak value as a function of nondimensional
pitch rate.
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Overall, as measured by a time-averaged error, the results
indicated that the network accurately modeled three-dimen-
sional dynamic reattachment to within 5% of the experimental
data. These results support the previous indication, from
dynamic stall models, that highly accurate real-time models
of unsteady separated flowfields can be developed using
neural networks. Further, these results strongly suggest that
such models can be used to detect changes in the flow phys-
ics as well as for defining areas within the parameter space
where additional experimental characterization would be
useful.

Conclusions

Unsteady surface pressure readings, for seven nondimen-
sional pitch rates, were obtained from a wing started at 60-
deg angle of attack and pitched down to 0-deg angle of attack.
All records showed extensive alterations in the three-dimen-
sional unsteady reattachment as a function of both nondi-
mensional pitch rate and span location. Using this data, neural
network models for three-dimensional dynamic reattachment
were developed. Following training, the inputs to the network
were the «, da/dt, and ¢,. Subsequently, to maintain the time
dependence of the flowfield, the time (¢t + Af) network pre-
dictions for each of the 45 surface pressures were fed back as
inputs to the network throughout the pitch history. The results
clearly indicated that except for the initial conditions, the
model did not require any measured data in order to predict
dynamic reattachment. Overall, as measured by a time-av-
eraged error, the results indicated that the network accurately
modeled three-dimensional dynamic reattachment to within
5% of the experimental data.

The results for a nondimensional pitch rate of 0.02, shown
in Fig. 9, provided a clear example of a case where additional
data in the range of a* 0.02-0.04 would be useful in order
to better characterize the transition in flow physics. Note, a
priori, that there was no way to know if this additional ex-
perimental characterization would be justified or needed. As
such, these results indicate that such models can be used not
only to detect changes in the flow physics, but for defining
areas within the parameter space where additional experi-
mental characterization would be useful.

As shown herein, the real-time prediction of dynamic re-
attachment for three-dimensional unsteady separated flow-
fields and aerodynamic coefficients can readily be attained
using neural networks. Further, these results were shown to
span an extremely broad parameter range. Similar results
have previously been shown for the real-time prediction of
dynamic stall.’>!* Accurate, real-time predictions of three-
dimensional unsteady separated flowfields should facilitate
the development of control systems for improving helicopter

and wind-turbine performance, as well as for enhancing air-
craft agility.
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